Abstract

Plants and animals independently evolved the ability to recognize flagellin (also called FliC), the building block of the bacterial flagellum, as part of their innate immune response. While animals recognize a relatively large region of FliC, most plants recognize one or two short epitopes of FliC: flg22 and flgII-28. However, since most research in plants has focused on flg22 and flgII-28 and not the actual FliC protein, the importance of any FliC region beyond the two epitopes in plant immunity is poorly understood. Here we report cloning, overexpression, and purification of a Pseudomonas syringae FliC fragment from amino acid 1 to 143, which includes both FliC epitopes and the adjacent alpha helices. Exposing Arabidopsis thaliana leaves to FliC1–143 did not reveal any additional FliC recognition capabilities beyond flg22. However, while the kiwifruit species Actinidia arguta did not respond to either flg22 or flgII-28, treatment of A. arguta leaves with FliC1–143 triggered a significant reactive oxygen response, indicating recognition. This result suggests that in some plant species, recognition of FliC requires regions of FliC beyond the two well-known epitopes and that FliC1–143 represents a useful tool in the study of plant immunity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.