Abstract
The global objective of this work is to show the capabilities of the Eulerian–Lagrangian spray atomization (ELSA) model for the simulation of Diesel sprays in cold starting conditions. Our main topic is to focus in the analysis of spray formation and its evolution at low temperature 255 K (-18°C) and nonevaporative conditions. Spray behavior and several macroscopic properties, included the liquid spray penetration, and cone angle are also characterized. This study has been carried out using different ambient temperature and chamber pressure conditions. Additionally, the variations of several technical quantities, as the area coefficient and effective diameter are also studied. The results are compared with the latest experimental results in this field obtained in our institute. In the meantime, we also compare with the normal ambient temperature at 298 K (25°C) where the numerical validation of the model has shown a good agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.