Abstract
Organic matter in surface sediments from two onshore-offshore transects in the northwestern Gulf of Mexico was characterized by a variety of techniques, including elemental, stable carbon, radiocarbon, and molecular-level analyses. In spite of the importance of the Mississippi River as a sediment source, there is little evidence for a significant terrigenous input based on the low carbon:nitrogen ratios (8–5) and the enriched δ 13C values of bulk sedimentary organic carbon (−19.7‰ to −21.7‰). Radiocarbon analyses, on the other hand, yield depleted Δ 14C values (−277‰ to −572‰) which indicate that a significant fraction of the sedimentary organic carbon (OC) in all these surface sediments must be relatively old and most likely of allochthonous origin. CuO oxidations yield relatively low quantities of lignin products (0.4–1.4 mg/100 mg OC) along with compounds derived from proteins, polysaccharides, and lipids. Syringyl:vanillyl and cinnamyl:vanillyl ratios (averaging 1.6 and 0.5, respectively) and acid:aldehyde ratios for both vanillyl and syringyl phenols (averaging 0.8 and 1.2, respectively) indicate that the lignin present in sediments originates from nonwoody angiosperm sources and is highly degraded. The δ 13C values of lignin phenols in shelf sediments are relatively depleted in 13C (averaging −26.3‰) but are increasingly enriched in 13C at the slope sites (averaging −17.5‰ for the two deepest stations). We interpret these molecular and isotopic compositions to indicate that a significant fraction (≥50%) of the lignin and, by inference, the land-derived organic carbon in northwestern Gulf of Mexico sediments ultimately originated from C 4 plants. The source of this material is likely to be soil organic matter eroded from the extensive grasslands of the Mississippi River drainage basin. Notably, the mixed C 4 and C 3 source and the highly degraded state of this material hampers its recognition and quantification in shelf and slope sediments. Our data are consistent with higher than previously estimated inputs of land-derived organic carbon to regions of the ocean, such as the Gulf of Mexico, with significant sources of terrigenous C 4-derived organic matter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.