Abstract

Carbon monoxide is a member of the gasotransmitter family, which also includes NO and H(2)S, and has been implicated in a variety of pathological and physiological conditions. Whereas exogenous therapeutic additions of CO to tissues and whole animals have been well-studied, the real-time spatial and temporal tracking of CO at the cellular level remains an open challenge. Here we report a new type of turn-on fluorescent probe for selective CO detection based on palladium-mediated carbonylation reactivity. CO Probe 1 (COP-1) is capable of detecting CO both in aqueous buffer and in live cells with high selectivity over a range of biologically relevant reactive small molecules, providing a potentially powerful approach for interrogating its chemistry in biological systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.