Abstract

A facile confined solid-state seed-mediated alloying strategy is applied for the rational synthesis of supported Au-Ni bimetallic nanoparticles (BMNPs). The method sequentially deposits nickel salts and AuNP seeds into the ordered array of extra-large mesopores (EP-FDU-12 support) followed by a high-temperature annealing process. The size, structure, and composition of the AuNi BMNPs can be well tuned by varying the AuNP seeds, annealing temperature, and feeding ratio of metal precursors. Kinetic studies and DFT calculations suggest that the introduction of the Ni component can significantly prompt the O2 activation on AuNPs, which is critical for the selective alcohol oxidation using molecular O2 as the oxidant. The optimal Au-Ni BMNP catalyst showed the highest turnover frequency (TOF) (59 000 h-1, 240 °C) and highest space-time yield (STY) of benzyl aldehyde (BAD) productivity (9.23 kg·gAu-1·h-1) in the gas-phase oxidation of benzyl alcohol (BA), which is at least about 5-fold higher than that of other supported Au catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.