Abstract

An unlabeled ratiometric molecular imprinted electrochemiluminescence sensor was developed for the determination of trace uric acid, based on MXene@NaAsc nanocomposites, CdSe@ZnS quantum dots and molecularly imprinted polymer composites modified glass carbon electrode. MXene@NaAsc stably enhanced the electron transfer and improved electrochemiluminescence intensity by acting as a base platform and signal amplifier for CdSe@ZnS quantum dots. Specific molecular imprinting cavities based on electropolymerization with o-phenylenediamine were formed to specifically identify uric acid. Combining the good sensitivity of electrochemiluminescence and the excellent selectivity of molecularly imprinted polymer, the ratio of optical signal and electrical signal was used as a comprehensive signal to achieve the detection of uric acid. Based on this, uric acid was detected in the range from 1 × 10−10 to 1 × 10−4 mol/L with the LOD of 18.13 pmol/L (S/N = 3). The developed sensor with easy preparation, great selectivity and excellent sensitivity could successfully detect uric acid in human serum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.