Abstract

Sarcoglycanopathies (SGPs) constitute a subgroup of autosomal recessive limb girdle muscular dystrophies (LGMDs) which are caused by mutations in sarcoglycan (SGs) genes. SG proteins form a core complex consisting of α, β, γ and δ sarcoglycans which are encoded by SGCA, SGCB, SGCG and SGCD genes, respectively. Genetic defect, in any of these SG proteins, results in instability of the whole complex. This effect can be helpful in interpreting muscle biopsy results. Autozygosity mapping is a gene mapping approach which can be applied in large consanguineous families for tracking the defective gene in most autosomal recessive disorders. In the present study, we used autozygosity mapping, to find the gene responsible for muscular dystrophy. Proband was a 10-year-old boy referred to our center for ruling out DMD (Duchenne muscular dystrophy). According to the pedigree and clinical reports, we assessed him for SGPs. Haplotyping, using the four short tandem repeat (STR) markers for each of the SG genes, showed that the phenotype may segregate with SGCB gene; and observing two crossing overs which occurred within the gene suggested that the mutation might be in the first two exons of SGCB gene. Mutation analysis showed a 26 bp duplication (10 bp before the initiation codon till 13 bp after the ATG start codon). This will cause a frameshift in protein synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.