Abstract
A diagnostic method is described for the identification and differentiation of nucleopolyhedrovirus (NPV) pathogens of Helicoverpa species (Lepidoptera: Noctuidae) isolated from the environment. The method is based on the polymerase chain reaction (PCR) used in conjunction with restriction fragment length polymorphism (RFLP) analysis and comprises three parts. The first part describes procedures for obtaining PCR quality viral DNA from individual diseased H. armigera cadavers recovered during bioassay analyses of soil and other types of environmental sample. These procedures were modified from standard techniques used for the routine purification and dissolution of NPV polyhedra and provided an overall PCR success rate of 95% ( n=60). The second part describes the design of several sets of PCR primers for generating DNA amplification products from closely and distantly related NPVs. These PCR primers were designed from published DNA sequence data and from randomly cloned genomic DNA fragments isolated from a reference H. armigera SNPV (HaSNPV) isolate. The final part of the method describes how specific PCR products when digested with specific restriction endonuclease enzymes, can be used to generate diagnostic DNA profiles (haplotypes) that can be used both to identify heterologous NPVs e.g. Autographa californica MNPV and related viruses, and to differentiate genotypic variants of Helicoverpa SNPV. In the latter case, only two PCR products and four restriction digests were required to differentiate a reference set of 10 Helicoverpa SNPV isolates known to differ 0.1–3.5% at the nucleotide level. The diagnostic method described below marks the second part of a two-phase quantitative-diagnostic protocol that is now being applied to a variety of ecological investigations. In particular, its application should lead to a significant improvement in our understanding of the distribution and population genetics of Helicoverpa SNPVs in the Australian environment, as well as providing a sound basis for the design of pre- and post-release monitoring systems for genetically enhanced bioinsecticides. It is also likely that this method can be adapted readily to the study of other insect pathogen associations important economically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.