Abstract

Polymyxa spp. are vectors for a number of economically important soilborne plant viruses. The development of a technique to detect virus and vectors directly in soil would be useful for epidemiological studies and assessment of disease risk prior to planting. A rapid method was developed to extract and quantify Polymyxa spp. DNA from soils. DNA was extracted from three soils infested with Polymyxa betae and three infested with P. graminis using an EDTA lysis buffer in combination with a MagneSil™ DNA extraction kit and Kingfisher™ magnetic particle processor. Primers and probes designed to correspond to sequences within the internal transcribed spacer region 2 (ITS2) of ribosomal DNA enabled recovery and amplification of P. betae and P. graminis DNA using real‐time PCR and TaqMan chemistry. For the P. graminis‐infested soils, the purity of DNA obtained was sufficient to allow Polymyxa DNA to be amplified without dilution to remove inhibitors, but with P. betae‐infested soils, amplification was only achieved if the DNA was diluted 1:10. Using TaqMan PCR, a standard curve was constructed from uninfested soil spiked with known numbers of P. betae cystosori; the quantity of P. betae inoculum from naturally infested soil was then extrapolated from the curve. This technique offers a sensitive method of extracting, detecting and quantifying Polymyxa spp. DNA in soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.