Abstract

Traditional kinematic analysis of manipulators, built upon a deterministic articulated kinematic modeling often proves inadequate to capture uncertainties affecting the performance of the real robotic systems. While a probabilistic framework is necessary to characterize the system response variability, the random variable/vector based approaches are unable to effectively and efficiently characterize the system response uncertainties. Hence in this paper, we propose a random matrix formulation for the Jacobian matrix of a robotic system. It facilitates characterization of the uncertainty model using limited system information in addition to taking into account the structural inter-dependencies and kinematic complexity of the manipulator. The random Jacobian matrix is modeled such that it adopts a symmetric positive definite random perturbation matrix. The maximum entropy principle permits characterization of this perturbation matrix in the form of a Wishart distribution with specific parameters. Comparing to the random variable/vector based schemes, the benefits now include: incorporating the kinematic configuration and complexity in the probabilistic formulation, achieving the uncertainty model using limited system information (mean and dispersion parameter), and realizing a faster simulation process. A case study of a 6R serial manipulator (PUMA 560) is presented to highlight the critical aspects of the process. A Monte Carlo analysis is performed to capture the deviations of distal path from the desired trajectory and the statistical analysis on the realizations of the end effector position and orientation shows how the uncertainty propagates throughout the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.