Abstract

Sulfur dioxide derivatives (HSO3− and SO32−) play an important role in food preservative, antibacterial, antioxidant and other aspects, so it is urgent for us to develop more efficient detection methods to broaden their application in biochemical research and related disease diagnosis. Fluorescent probes are of particular interest because of their simplicity and high temporal and spatial resolution. Herein, we constructed a new near-infrared (NIR) fluorescence probe, CQC, composed of coumarin fluorophore and quinoline fluorophore, for detecting SO2 derivatives. The near-infrared emission probe CQC with a large Stokes shift (260 nm) not only kept the distance between the two emission peaks large enough (165 nm), but also had a particularly high energy transfer efficiency (99.5%), and was particularly sensitive to the detection of HSO3−/SO32− (LOD: 0.1 μM). The powerful probe CQC succeeded in real-time visualizing endogenous HSO3−/SO32− in living cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.