Abstract

The western honey bee, Apis mellifera L. (Hymenoptera), is arguably the most important pollinator worldwide. While feeding, A. mellifera uses a rapid back-and-forth motion with its brush-like mouthparts to probe pools and films of nectar. Because of the physical forces experienced by the mouthparts during the feeding process, we hypothesized that the mouthparts acquire wear or damage over time, which is paradoxical, because it is the older worker bees that are tasked with foraging for nectar and pollen. Here, we show that the average length of the setae (brush-like structures) on the glossa decreases with honey bee age, particularly when feeding on high-viscosity sucrose solutions. The nectar intake rate, however, remains nearly constant regardless of age or setae length (0.39±0.03 μgs-1 for honey bees fed a 45% sucrose solution and 0.48±0.05 μgs-1 for those fed a 35% sucrose solution). Observations of the feeding process with high-speed video recording revealed that the older honey bees with shorter setae dip nectar at a higher frequency. We propose a liquid transport model to calculate the nectar intake rate, energy intake rate and the power to overcome viscous drag. Theoretical analysis indicates that A. mellifera with shorter glossal setae can compensate both nectar and energy intake rates by increasing dipping frequency. The altered feeding behavior provides insight into how A. mellifera, and perhaps other insects with similar feeding mechanisms, can maintain a consistent fluid uptake rate, despite having damaged mouthparts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.