Abstract

In the present paper, we are going to show that outside a slim set in the sense of Malliavin (or quasi-surely), the signature path (which consists of iterated path integrals in every degree) of Brownian motion is non-self-intersecting. This property relates closely to a non-degeneracy property for the Brownian rough path arising naturally from the uniqueness of signature problem in rough path theory. As an important consequence we conclude that quasi-surely, the Brownian rough path does not have any tree-like pieces and every sample path of Brownian motion is uniquely determined by its signature up to reparametrization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.