Abstract
The time-delayed forward scattering mechanism recently identified by Althorpe et al. [Nature (London) 416, 67 (2002)] for the H+D(2)(v=0,j=0)-->HD(v(')=3,j(')=0)+D reaction was analyzed by using quasiclassical trajectory (QCT) methodology. The QCT results were found to match the quantum wavepacket snapshots of Althorpe et al., albeit without the quantum scattering effects. Trajectories were analyzed on the fly to investigate the dynamics of the atoms during the reaction. The dominant reaction mechanism progresses from hard collinear impacts, leading to direct recoil, toward glancing impacts. The increased time required for forward scattered trajectories is due to the rotation of the transient HDD complex. Forward scattered trajectories display symmetric stretch vibrations of the transient HDD complex, a signature of the presence of a resonance, or a quantum bottleneck state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.