Abstract

A quasi 2-D conduction model based on the thermionic emission of charge carriers over the energy barriers at discrete grain boundaries is formulated for a polycrystalline silicon thin-film transistor with an undoped body. Each grain boundary is characterized by an energy-dispersed density of trap states. The occupied trap states are assumed to form a ldquolinerdquo charge adjacent to the interface of the channel and the gate dielectric of a transistor. The electrostatic potential of a grain boundary is subsequently determined. This general approach allows the modeling of energy barriers in a transistor without deliberate channel doping, and the resulting conduction model is continuously applicable from the ldquopseudosubthresholdrdquo to the ldquolinearrdquo regime of operation of a transistor. Good agreement between the experimental and the calculated transfer and output characteristics is obtained. The procedure for determining the density of trap states is described and demonstrated. It is found that the energy dependence of the trap states can be approximated by a simple exponential function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.