Abstract

A quasi-discrete model for heating and evaporation of complex multicomponent hydrocarbon fuel droplets is suggested and tested in Diesel engine-like conditions. The model is based on the assumption that properties of components are weak functions of the number of carbon atoms in the components ( n). The components with relatively close n are replaced by the quasi-components with properties calculated as average properties of the a priori defined groups of actual components. Thus the analysis of heating and evaporation of droplets consisting of many components is replaced by the analysis of heating and evaporation of droplets consisting of relatively few quasi-components. In contrast to previously suggested approaches to modelling the heating and evaporation of droplets consisting of many components, the effects of temperature gradient and quasi-component diffusion inside droplets are taken into account. The model is applied to Diesel fuel droplets, approximated as a mixture of 21 components C n H 2 n+2 for 5 ⩽ n ⩽ 25, which correspond to a maximum of 20 quasi-components with average properties for n = n j and n = n j+1 , where j varies from 5 to 24. It is pointed out that droplet surface temperatures and radii, predicted by a rigorous model taking into account the effect of all 20 quasi-components, are very close to those predicted by the model, using just five quasi-components. Errors due to the assumptions that the droplet thermal conductivity and species diffusivities are infinitely large cannot be ignored in the general case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.