Abstract
An interconnection structure using a TiN/Al-1% Si-0.5% Cu/TiN/Al-1% Si-0.5% Cu/TiN/Ti multilayer conductor was investigated as a quarter-micrometer interconnection candidate for 256-Mb DRAMs. It was found that intermetallic compounds such as TiAl/sub x/ were formed at both grain boundaries of Al-Si-Cu and interfaces between Al-Si-Cu and TiN of the multilayer, resulting in both increase in Vickers hardness and suppression of stress relaxation. The multilayer conductor strip, which was covered with plasma-enhanced chemical vapor deposition silicon nitride (P-SiN), suppressed stress-induced voiding after heat treatment at 500 degrees C. Electromigration tests for quarter-micrometer wide multilayer strips indicated the improvement in the mean time to failure and the increase of the standard deviation.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.