Abstract

We describe the use of Grover’s algorithm as implemented in a quantum logic circuit that produces a solution for a classical switching circuit design problem. The particular application described here is to determine a Fixed Polarity Reed-Muller (FPRM) form that satisfies a threshold value constraint, thus we find a particular FPRM form among all 2^n FPRM forms that has a number of terms less than or equal to the threshold value. Grover’s algorithm is implemented in a quantum logic circuit that also contains a subcircuit that expresses all possible FPRM solutions of a given function. This approach illustrates how fast transforms as known from spectral theory can be combined with quantum computing as a part of an oracle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.