Abstract

A key trait conferring flood tolerance is the ability to grow adventitious roots as a response to submergence. The genetic traits of deepwater rice determining the development and characteristics of aquatic adventitious roots (AAR) had not been evaluated. We used near-isogenic lines introgressed to test the hypothesis that the impressive shoot elongation ability of deepwater rice linked to quantitative trait loci 1 and 12 also promote the development of AAR. The deepwater rice genotype NIL-12 possessed expanded regions at the stem nodes where numerous AAR developed as a response to submergence. Two types (AR1 and AR2) of roots with distinct timing of emergence and large differences in morphological and anatomical traits formed within 3 (AR1) to 7 (AR2) d of submergence. The mechanical impedance provided by the leaf sheath caused AR2 to emerge later promoting thicker roots, higher elongation capacity and higher desiccation tolerance. Upregulation of key genes suggests a joint contribution in activating the meristem in AAR enhancing the development of these in response to submergence. The morphological and anatomical traits suggested that AR2 is better adapted to long-term flooding than AR1. We therefore propose that AR2 in deepwater rice functions as an evolutionary defence strategy to tackle periodic submergence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.