Abstract
AbstractWe prove a Carleman estimate for elliptic second-order partial differential expressions with Lipschitz continuous coefficients. The Carleman estimate is valid for any complex-valued function u ∈ W2,2 with support in a punctured ball of arbitrary radius. The novelty of this Carleman estimate is that we establish an explicit dependence on the Lipschitz and ellipticity constants, the dimension of the space and the radius of the ball. In particular, we provide a uniform and quantitative bound on the weight function for a class of elliptic operators given explicitly in terms of ellipticity and Lipschitz constant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Royal Society of Edinburgh: Section A Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.