Abstract

Abstract Machine Learning (ML) is ubiquitously on the advance. Like many domains, Earth Observation (EO) also increasingly relies on ML applications, where ML methods are applied to process vast amounts of heterogeneous and continuous data streams to answer socially and environmentally relevant questions. However, developing such ML- based EO systems remains challenging: Development processes and employed workflows are often barely structured and poorly reported. The application of ML methods and techniques is considered to be opaque and the lack of transparency is contradictory to the responsible development of ML-based EO applications. To improve this situation a better understanding of the current practices and engineering-related challenges in developing ML-based EO applications is required. In this paper, we report observations from an exploratory study where five experts shared their view on ML engineering in semi-structured interviews. We analysed these interviews with coding techniques as often applied in the domain of empirical software engineering. The interviews provide informative insights into the practical development of ML applications and reveal several engineering challenges. In addition, interviewees participated in a novel workflow sketching task, which provided a tangible reflection of implicit processes. Overall, the results confirm a gap between theoretical conceptions and real practices in ML development even though workflows were sketched abstractly as textbook-like. The results pave the way for a large-scale investigation on requirements for ML engineering in EO.

Highlights

  • Machine Learning (ML) is on the rise and is examined and utilised in many different fields of both research and industry

  • We report observations from an exploratory study where five experts shared their view on ML engineering in semistructured interviews

  • In the workflow sketching task, we observed that interviewed ML researchers have a strong mental conception of processes

Read more

Summary

Introduction

Machine Learning (ML) is on the rise and is examined and utilised in many different fields of both research and industry. The pursuit of new innovative applications and of even higher accuracy scores in existing tasks dominates the field and there are seldom enough resources to carefully plan, document or reflect the executed experiments [17]. This is especially devastating in deep learning, where processes and models are often opaque and black-boxlike [12]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.