Abstract
This paper describes the use of a quadratic manifold for the model order reduction of structural dynamics problems featuring geometric nonlinearities. The manifold is tangent to a subspace spanned by the most relevant vibration modes, and its curvature is provided by modal derivatives obtained by sensitivity analysis of the eigenvalue problem, or its static approximation, along the vibration modes. The construction of the quadratic manifold requires minimal computational effort once the vibration modes are known. The reduced-order model is then obtained by Galerkin projection, where the configuration-dependent tangent space of the manifold is used to project the discretized equations of motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.