Abstract

The number of triangulations of a planar n point set S is known to be cn, where the base c lies between 2.43 and 30. Similarly, the number of crossing-free spanning trees on S is known to be dn, where the base d lies between 6.75 and 141.07. The fastest known algorithm for counting triangulations of S runs in 2(1+o(1))nlog⁡n time while that for counting crossing-free spanning trees runs in O⁎(7.125n) time. The fastest known, non-trivial approximation algorithms for the number of triangulations of S and the number of crossing-free spanning trees of S, respectively, run in time subexponential in n. We present the first non-trivial approximation algorithms for these numbers running in quasi-polynomial time. They yield the first quasi-polynomial approximation schemes for the base of the number of triangulations of S and the base of the number of crossing-free spanning trees on S, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.