Abstract

Pyrolysis coupled to either thermal or catalytic cracking of mattress foam waste was performed in a laboratory-scale facility consisting of a fixed-bed reactor joined to a tubular cracking reactor. The results showed a great potential for the production of syngas specially at high cracking temperatures. Particularly, fixing 800 °C in the cracking reactor, a CO and CH4 rich gas with a remarkable amount of H2 was obtained. The addition of catalysts (dolomite, olivine or HiFUEL®) significantly decreased undesirable tar formation, (below 10 wt%), simultaneously increasing the gas yield and keeping CO and CH4 as the main components in the stream, becoming a preferable route that the non-catalytic process. Accordingly, this stream could be used preferably for further applications in energy generation because its heating value ranged between 15.7 MJ/Nm3 and 19.6 MJ/Nm3. In particular, the gas obtained by the use of dolomite could be advantageous for the production of organic compounds such as dimethyl ether (DME) as well as its use an engine or boiler to generate electricity in small facilities. In addition, the solid fraction obtained after de process could be used as a medium quality refused derived fuel (LHV ~ 12 MJ/kg) in order to support the internal energy requirements of the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.