Abstract
We present a pseudopotential method to study the absorption spectroscopy of NO in an argon matrix modeled by a large albeit finite cluster. The excited states of NO are described with the virtual orbitals of a NO+ Hartree-Fock calculation plus a core-polarization operator to account for the electron-NO+ correlation. The argon atoms of the matrix are replaced by pseudopotentials for the repulsive contributions and core-polarization operators to account for matrix polarization and correlation with the excited electron. The model is shown to account for the matrix-induced transition shifts and also for the cut-off of the Rydberg series for n >3 reported in absorption experiments from the ground state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The European Physical Journal D - Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.