Abstract
We consider two-person zero-sum stochastic mean payoff games with perfect information, or BWR-games, given by a digraph G=(V,E), with local rewards r:E→Z, and three types of positions: black VB, white VW, and random VR forming a partition of V. It is a long-standing open question whether a polynomial time algorithm for BWR-games exists, or not, even when |VR|=0. In fact, a pseudo-polynomial algorithm for BWR-games would already imply their polynomial solvability. In this paper,1 we show that BWR-games with a constant number of random positions can be solved in pseudo-polynomial time. More precisely, in any BWR-game with |VR|=O(1), a saddle point in uniformly optimal pure stationary strategies can be found in time polynomial in |VW|+|VB|, the maximum absolute local reward, and the common denominator of the transition probabilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.