Abstract

BackgroundHuman papillomavirus (HPV) vaccines are indicated for the prevention of cancers and genital warts caused by vaccine-covered HPV types. Although the standard regimen requires a two or three-dose vaccine series, there is emerging data suggesting that a single dose of the bivalent or quadrivalent HPV vaccine generates persistently positive antibody titers. No similar data is yet available for the nonavalent HPV vaccine, currently the only HPV vaccine available in the United States. The overall objective of our study is to assess the stability and kinetics of antibody titers for 24 months following a single dose of the nonavalent HPV vaccine among preteen girls and boys.MethodsThis is a prospective, single-arm, open-label, non-randomized, Phase IIa trial among 9–11 year-old girls and boys to determine the immunogenicity after a single dose of the nonavalent HPV vaccine (GARDASIL® 9) over 24 months, with a deferred booster dose at 24 months and an optional booster at 30 months after the first dose. Participants provide blood specimens at 6, 12, 18, 24, and 30 months after the first dose. Serologic geometric mean titers (GMT) of the nine vaccine types (HPV 16/18/ 6/11/31/33/45/52/58) will be measured at each time point. The primary objective is to determine the stability of type-specific serologic GMT of HPV16 and HPV18 between the 6- vs. 12-month, 12- vs. 18-month, and 18- vs. 24-month visits. Secondary objectives are to determine the stability of type-specific serologic GMT of the other HPV types (HPV 6/11/31/33/45/52/58) between the visits and to assess safety and reactogenicity after each vaccine dose.DiscussionSingle dose HPV vaccination could simplify the logistics and reduce costs of HPV vaccination in the US and across the world. This study will contribute important immunogenicity data on the stability and kinetics of type-specific antibody titers and inform feasibility of the single dose HPV vaccination paradigm.Trial registrationClinicalTrials.gov Identifier: NCT02568566. Registered on October 6, 2015.

Highlights

  • Human papillomavirus (HPV) vaccines are indicated for the prevention of cancers and genital warts caused by vaccine-covered HPV types

  • More than 200 types of HPV have been identified, only a handful types are considered oncogenic (‘high-risk’); 70% of cervical cancers are attributable to HPV type 16 (‘HPV16’) and type 18 (‘HPV18’) [1]

  • Three HPV vaccines have been licensed for use in the U.S, including the bivalent vaccine (Cervarix®, GlaxoSmithKline Biologicals) targeting two HPV types (HPV16 and 18), the quadrivalent vaccine (Gardasil®, Merck and Co., Inc.) targeting four HPV types (HPV16, 18, 6, and 11) and the nonavalent vaccine (Gardasil® 9, Merck and Co., Inc.) targeting nine HPV types (HPV16, 18, 6, 11, 31, 33, 45, 52, and 58)

Read more

Summary

Introduction

Human papillomavirus (HPV) vaccines are indicated for the prevention of cancers and genital warts caused by vaccine-covered HPV types. The standard regimen requires a two or three-dose vaccine series, there is emerging data suggesting that a single dose of the bivalent or quadrivalent HPV vaccine generates persistently positive antibody titers. Three HPV vaccines have been licensed for use in the U.S, including the bivalent vaccine (Cervarix®, GlaxoSmithKline Biologicals) targeting two HPV types (HPV16 and 18), the quadrivalent vaccine (Gardasil®, Merck and Co., Inc.) targeting four HPV types (HPV16, 18, 6, and 11) and the nonavalent vaccine (Gardasil® 9, Merck and Co., Inc.) targeting nine HPV types (HPV16, 18, 6, 11, 31, 33, 45, 52, and 58) These vaccines are non-infectious subunit vaccines that contain virus-like particles (VLP) of respective HPV types. Recent evidence from vaccination programs in countries (e.g., Australia) with high vaccine uptake and series completion rates suggests population-based reduction in rates of vaccine HPV types, HPV-related precancerous lesions, and genital warts in both vaccinated age-cohorts as well as herd immunity effects in unvaccinated populations [3]. The barriers to implementation in developing countries are even greater, considering the high cost and logistical difficulties of multiple dose schedule [5]

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.