Abstract

Converting CO2 into valuable C1 -C2 chemicals through electrochemical CO2 reduction (ECR) has potential to remedy the ever-increasing climate problems owing to the intensification of industrial activity. In this work, cradle-to-gate life cycle assessment (LCA) was performed to quantify the environmental impacts of formic acid (FA) and ethylene production through ECR benchmarked with the conventional processes. At the midpoint level, global warming potential (GWP) effects of FA and ethylene production through ECR recorded 5.6 and 1.6-times that of the conventional process, respectively. Although ECR currently has limited environmental benefits, the incorporation of hydropower has vast potential after evaluating four sustainable electricity sources, namely hydropower, wind, solar, and biomass. Notably, ECR to FA recorded a 24 % reduction in petrochemical usage. For ethylene production, human health damage, ecosystem damage, and petrochemical use were reduced by 67, 94, and 110 %, respectively. Sensitivity analysis indicated that a sustainable energy supply chain for ECR will accelerate the development of a circular economy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.