Abstract
Mammalian immunoglobulin (IG) genes are found in complex loci that contain hundreds of highly similar pseudogenes, functional genes and repetitive elements, which has made their investigation particularly challenging. High-throughput sequencing has provided new avenues for the investigation of these loci, and has recently been applied to study the IG genes of important inbred mouse strains, revealing unexpected differences between their IG loci. This demonstrated that the structural differences are of such magnitude that they call into question the merits of the current mouse IG gene nomenclatures. Three nomenclatures for the mouse IG heavy chain locus (Igh) are presently in use, and they are all positional nomenclatures using the C57BL/6 genome reference sequence as their template. The continued use of these nomenclatures requires that genes of other inbred strains be confidently identified as allelic variants of C57BL/6 genes, but this is clearly impossible. The unusual breeding histories of inbred mouse strains mean that, regardless of the genetics of wild mice, no single ancestral origin for the IG loci exists for laboratory mice. Here we present a general discussion of the challenges this presents for any IG nomenclature. Furthermore, we describe principles that could be followed in the formulation of a solution to these challenges. Finally, we propose a non-positional nomenclature that accords with the guidelines of the International Mouse Nomenclature Committee, and outline strategies that can be adopted to meet the nomenclature challenges if three systems are to give way to a new one.
Highlights
The generation of antibody diversity relies in part on the use of genes from extensive gene families residing in the immunoglobulin (IG) loci of the mammalian genome
It was soon realized that functional mouse IG heavy and kappa light chain variable (Ighv, Igkv) genes exist as multigene families [4, 5]
E.g., belong to 15 gene families [5, 6], and the first names given to the Igkv and Ighv gene families came from the names of the cell lines that were used in their identification
Summary
High-throughput sequencing has provided new avenues for the investigation of these loci, and has recently been applied to study the IG genes of important inbred mouse strains, revealing unexpected differences between their IG loci. This demonstrated that the structural differences are of such magnitude that they call into question the merits of the current mouse IG gene nomenclatures. The continued use of these nomenclatures requires that genes of other inbred strains be confidently identified as allelic variants of C57BL/6 genes, but this is clearly impossible. We propose a non-positional nomenclature that accords with the guidelines of the International Mouse Nomenclature Committee, and outline strategies that can be adopted to meet the nomenclature challenges if three systems are to give way to a new one
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.