Abstract

Quantum computers require technologies that offer both sufficient control over coherent quantum phenomena and minimal spurious interactions with the environment. We show, that photons confined to photonic crystals, and in particular to highly efficient waveguides formed from linear chains of defects doped with atoms can generate strong non-linear interactions which allow to implement both single and two qubit quantum gates. The simplicity of the gate switching mechanism, the experimental feasibility of fabricating two dimensional photonic crystal structures and integrability of this device with optoelectronics offers new interesting possibilities for optical quantum information processing networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.