Abstract

The proof of the mean value theorem for differentiable functions presented in modern calculus texts is due to Bonnet (1860s) and depends in an essential way on the extreme value property for continuous functions proved by Weierstrass (1861). This proof of the mean value theorem has intuitive quality but mainstream texts omit the proof of Weierstrass's result on account of its difficulty, thereby depriving the reader of a complete proof of the mean value theorem. Forty years earlier, Cauchy proved the intermediate value property for continuous functions and made a significant but flawed effort to prove a mean value inequality. This note presents a proof of the modern mean value theorem using methods of Cauchy. The key geometrical insight is provided by a simple inequality involving the slopes of sides of a triangle whose vertices lie in the graph of the function. This inequality motivates the use of the intermediate value property in the proof of the mean value theorem and facilitates final determination of the required value of the derivative. An advantage of this alternative to Bonnet's proof is that it is based directly on the completeness of the real numbers rather than on the result of Weierstrass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.