Abstract
Several algorithms already exist for solving the uncapacitated facility location problem. The most efficient are based upon the solution of the strong linear programming relaxation. The dual of this relaxation has a condensed form which consists of minimizing a certain piecewise linear convex function. This paper presents a new method for solving the uncapacitated facility location problem based upon the exact solution of the condensed dual via orthogonal projections. The amount of work per iteration is of the same order as that of a simplex iteration for a linear program inm variables and constraints, wherem is the number of clients. For comparison, the underlying linear programming dual hasmn + m + n variables andmn +n constraints, wheren is the number of potential locations for the facilities. The method is flexible as it can handle side constraints. In particular, when there is a duality gap, the linear programming formulation can be strengthened by adding cuts. Numerical results for some classical test problems are included.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.