Abstract

In this article, we study the symmetric nonnegative matrix factorization (SNMF) which is a powerful tool in data mining for dimension reduction and clustering. The main contributions of the present work include: (i) a new descent direction for the rank-one SNMF is derived and a strategy for choosing the step size along this descent direction is established; (ii) a progressive hierarchical alternating least squares (PHALS) method for SNMF is developed, which is parameter-free and updates the variables column by column. Moreover, every column is updated by solving a rank-one SNMF subproblem; and (iii) the convergence to the Karush-Kuhn-Tucker (KKT) point set (or the stationary point set) is proved for PHALS. Several synthetical and real data sets are tested to demonstrate the effectiveness and efficiency of the proposed method. Our PHALS provides better performance in terms of the computational accuracy, the optimality gap, and the CPU time, compared with a number of state-of-the-art SNMF methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.