Abstract

A digital lab-on-CMOS chip is presented for nucleic acid amplification test. This biochip consists of programmable microelectrode dot array and digital timing controller. With novel circuit design in each microelectrode, microfluidic operations with velocity of 0.6mm/s, temperature profile with maximum change rate of 4.5°C/s and location sensing in <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu $ </tex-math></inline-formula> second-level can be achieved. As a result, test samples can be located first, followed by target operations to meet the requirements of specific medical tests with less reagent consumption and test time/cost. Furthermore bio-protocols can be derived to ensure both replicability and reliability in various medical tests. Preliminary results in loop-mediated isothermal amplification (LAMP) and PCR thermal cycle tests demonstrate the feasibility of our proposal with less test time of < 40 min and < 1 min respectively, making our proposal very suitable for mobile healthcare applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.