Abstract

The Process Analytical Technology (PAT) initiative, undertaken by the Food and Drug Administration (FDA), paves the way for improvement of drug manufacturing through real-time measurements that allow better process understanding. This study is the third and final Part in a series of studies that represent an integrated approach for real-time blend uniformity assessment using near-infrared (NIR) technology. In this study, the development of a quantitative NIR model for prediction of blending end point is presented. Process signature was built into NIR calibration models by using blend samples that were collected from actual blend experiments under different processing conditions. Evaluation of various calibration algorithms including principal component regression (PCR), partial least squares (PLS), and multi-term linear regression (MLR) was performed. It was found that linear regression, using a single wavelength, yielded optimum calibration and prediction results. The blending profiles predicted by the NIR quantitative model correlated well to those determined by the UV reference analytical method. Characterization of intra-shell versus inter-shell powder mixing kinetics and its implication in sensor positioning was also performed and will be discussed. © 2005 Wiley-Liss, Inc. and the American Pharmacists Association

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.