Abstract

We have identified a clear preference of histone H1 for CpG-methylated DNA, irrespective of DNA sequence. The conditions under which this preference is observed allowed cooperative binding of H1; the H1-DNA complexes formed were shown earlier to be 'tramlines' of two DNA duplexes bridged by an array of H1 molecules, and multiples of these. The preference for methylated DNA is clear in sedimentation assays, which also show that the preference is greater with increased methylation level, and in gel retardation assays with an oligonucleotide containing a single methyl-CpG pair; it is shared by the globular domain which also binds cooperatively to DNA. A small intrinsic preference of H1 for methylated DNA is also apparent in Southwestern assays where the immobilized H1 presumably cannot bind cooperatively. Methylated DNA in H1-DNA complexes was partially protected (relative to unmethylated DNA) against digestion by MspI but not by enzymes whose cutting sites were not methylated, consistent with a direct interaction of H1 with methylated nucleotides; this was also true of GH1-DNA complexes. H1 variants (spH1 and H5) from transcriptionally repressed nuclei have a stronger preference than H1 for methylated DNA, suggesting that this may be relevant to the stabilization of chromatin higher order structure and transcriptional repression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.