Abstract
AimsDilated cardiomyopathy (DCM) is defined as a serious cardiac disorder caused by the presence of left ventricular dilatation and contractile dysfunction in the absence of severe coronary artery disease and abnormal loading conditions. The incidence of cardiac death is markedly higher in patients with DCM with pulmonary hypertension (PH) than in DCM patients without PH. No previous studies have constructed a predictive model to predict PH in patients with DCM.MethodsData from 218 DCM patients (68.3% man; mean age 57.33) were collected. Patients were divided into low, intermediate and high PH‐risk groups based on the echocardiographic assessment at the tricuspid regurgitation peak velocity (TRV) in conjunction with the presence of echocardiographic signs from at least two different categories. Basic information, vital signs, comorbidities and biochemical data of each patient were determined. The impact of each parameter on PH probability was analysed by univariable and multivariable analyses, the data from which were employed to establish a predictive model. Finally, the discriminability, calibration ability and clinical efficacy of the model were verified for both the modelling group and the external validation group.ResultsWe successfully applied a history of chronic obstructive pulmonary disease (COPD) or chronic bronchitis, systolic murmur (SM) at the tricuspid area, SM at the apex and brain natriuretic peptide (BNP) level to establish a model for predicting PH probability in DCM. The model was proven to have high accuracy and good discriminability (area under the receiver operating characteristic curve 0.889), calibration ability and clinical application value.ConclusionsA model for predicting PH probability in patients with DCM was successfully established. The new model is reliable for predicting PH probability in DCM and has good clinical applicability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.