Abstract
Bursting is an irrecoverable failure mode in tube hydroforming, in contrast with buckling and wrinkling. To predict bursting failure in the hydroforming processes, Oyane's ductile fracture criterion is introduced and evaluated from the results of stress and strain productions obtained from finite element analysis. The region of fracture initiation and the bursting pressures are predicted and compared with a series of experimental results. It is shown that the material parameters used in the criterion can be obtained from the forming limit diagram. From the simulation results of tube bulging, the prediction of the bursting failure based on the ductile fracture criterion was demonstrated to be reasonable. This approach can be extended to a wide range of practical tube hydroforming processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.