Abstract
ObjectiveTo establish a prediction model of qi stagnation referring to two existing models. DesignProspective observational study. SettingWe recruited patients who visited the Kampo Clinic at Keio University from February 2011 to March 2013. MethodsWe constructed a random forest algorithm with 202 items as independent variables to predict qi stagnation patterns using full agreement data of the physicians’ diagnosis and the result of two existing scores as a reference standard. To compare the new model with the two existing models, we calculated the discriminant ratio (prediction accuracy), precision, sensitivity (recall), specificity, and F-measure of these models. ResultsThe number of eligible participants was 1,194, and 29.1% of them were diagnosed with qi stagnation by Kampo physicians. The discriminant ratio, precision, sensitivity, specificity, and F-measure in our new model were 0.960, 0.672, 0.911, 0.964, and 0.774, respectively. Our new model had a significantly higher discriminant ratio than the two existing models. ConclusionsWe constructed a better qi stagnation prediction model than the previously established ones. Our results can be utilized to reach an international agreement on qi stagnation pattern diagnosis in traditional East Asian medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.