Abstract

BackgroundNuclear medicine is on the constant search of precision radiopharmaceutical approaches to improve patient management. Although discordant expression of the estrogen receptor (ER) and the human epidermal growth factor receptor 2 (HER2) in breast cancer is a known dilemma for appropriate patient management, traditional tumor sampling is often difficult or impractical. While 2-deoxy-2[18F]fluoro-D-glucose (18F-FDG)-positron emission tomography (PET) is an option to detect subclinical metastases, it does not provide phenotype information. Radiolabeled antibodies are able to specifically target expressed cell surface receptors. However, their long circulating half-lives (days) require labeling with long-lived isotopes, such as 89Zr, in order to allow sufficient time for tracer clearance from the blood compartment and to accumulate adequately in target tumors and, thus, generate high-quality PET images. The aim of this study was to develop a dual-tracer PET imaging approach consisting of a fast-clearing small molecule and a slow-clearing antibody. This approach was evaluated in a model consisting of mice harboring separate breast cancer xenografts with either an ER+/HER2− or ER−/HER2+ phenotype, comparable to human metastatic disease with intertumor heterogeneity. Lastly, the aim of our study was to determine the feasibility of specifically identifying these two important phenotypes in an acceptable time window.MethodsFemale nude mice were subcutaneously implanted on opposite shoulders with the ER+/HER2− and ER−/HER2+ MCF-7 and JIMT-1 tumor cell lines, respectively. A second model was developed consisting of mice implanted orthotopically with either MCF-7 or JIMT-1 cells. Pharmacokinetic analysis, serial PET imaging, and biodistribution were first performed for [89Zr]Zr-DFO-trastuzumab (89Zr-T) up to 8 days post-injection (p.i.) in JIMT-1 bearing mice. Region-of-interest (ROI) and biodistribution-derived uptake (% injected-activity/gram of tissue [%IA/g]) values and tumor-to-background ratios were obtained. Results were compared in order to validate ROI and identify early time points that provided high contrast tumor images. For the dual-tracer approach, cohorts of tumor-bearing mice were then subjected to sequential tracer PET imaging. On day 1, mice were administered 4-fluoro-11β-methoxy-16α-[18F]-fluoroestradiol (4FMFES) which targets ER and imaged 45 min p.i. This was immediately followed by the injection of 89Zr-T. Mice were then imaged on day 3 or day 7. ROI analysis was performed, and uptake was calculated in tumors and selected healthy organs for all radiotracers. Quality of tumor targeting for all tracers was evaluated by tumor contrast visualization, tumor and normal tissue uptake, and tumor-to-background ratios.Results89Zr-T provided sufficiently high tumor and low background uptake values that furnished high contrast tumor images by 48 h p.i. For the dual-tracer approach, 4FMFES provided tumor uptake values that were significantly increased in MCF-7 tumors. When 89Zr-T-PET was combined with 18F-4FMFES-PET, the entire dual-tracer sequential-imaging procedure provided specific high-quality contrast images of ER+/HER2− MCF-7 and ER−/HER2+ JIMT-1 tumors for 4FMFES and 89Zr-T, respectively, as short as 72 h from start to finish.ConclusionsThis protocol can provide high contrast images of tumors expressing ER or HER2 within 3 days from injection of 4FMFES to final scan of 89Zr-T and, hence, provides a basis for future dual-tracer combinations that include antibodies.

Highlights

  • Most individual breast tumors expressing the estrogen receptor (ER) are managed well by oncologists due to the availability of several developed hormonal therapies

  • For the dual-tracer approach, 4FMFES provided tumor uptake values that were significantly increased in MCF-7 tumors

  • We present an approach to intentionally integrate 4FMFES-positron emission tomography (PET) and 89Zr-T-PET in sequence and demonstrate its ability to detect ER+/human epidermal growth factor receptor 2 (HER2)− and ER −/HER2+ tumors, respectively, in a shortened time window

Read more

Summary

Introduction

Most individual breast tumors expressing the estrogen receptor (ER) are managed well by oncologists due to the availability of several developed hormonal therapies. Combination chemotherapy with anti-HER2 therapy is considered the best option for first-line treatment with patients with ER+/ HER2+ breast tumors [1] This is due to HER2 overexpression being an independent adverse prognostic factor [2, 3]. The aim of this study was to develop a dual-tracer PET imaging approach consisting of a fast-clearing small molecule and a slow-clearing antibody. This approach was evaluated in a model consisting of mice harboring separate breast cancer xenografts with either an ER+/HER2− or ER−/HER2+ phenotype, comparable to human metastatic disease with intertumor heterogeneity. The aim of our study was to determine the feasibility of identifying these two important phenotypes in an acceptable time window

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.