Abstract

A practical, rationally based method is presented for the automated optimum design of ship structures. The method required the development of (a) a rapid, design-oriented finite-element program for the analysis of ship structures; (b) a comprehensive mathematical model for the evaluation of the capability of the structure; and (c) a cost-effective optimization algorithm for the solution of a large, highly constrained, nonlinear redesign problem. These developments have been incorporated into a program called SHIPOPT. The efficiency and robustness of the method is illustrated by using it to determine the optimum design of a complete cargo hold of a general-purpose cargo ship. The overall dimensions and the design loads are the same as those used in the design of the very successful SD14 series of ships. The redesign problem contains 94 variables, a nonlinear objective function, and over 500 constraints of which approximately half are non-linear. Program SHIPOPT required approximately eight minutes of central processing unit time on a CDC CYBER 171 to determine the optimum design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.