Abstract
The study of nonlinear phenomena associated with physical phenomena is a hot topic in the present era. The fundamental aim of this paper is to find the iterative solution for generalized quintic complex Ginzburg–Landau (GCGL) equation using fractional natural decomposition method (FNDM) within the frame of fractional calculus. We consider the projected equations by incorporating the Caputo fractional operator and investigate two examples for different initial values to present the efficiency and applicability of the FNDM. We presented the nature of the obtained results defined in three distinct cases and illustrated with the help of surfaces and contour plots for the particular value with respect to fractional order. Moreover, to present the accuracy and capture the nature of the obtained results, we present plots with different fractional order, and these plots show the essence of incorporating the fractional concept into the system exemplifying nonlinear complex phenomena. The present investigation confirms the efficiency and applicability of the considered method and fractional operators while analyzing phenomena in science and technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.