Abstract

To enable the evolution towards electronically assisted healthcare, future medical implants require sensors and processing circuitry to inform patient and doctor on the rehabilitation status. An important branch of systems are those where implant strain is monitored through strain gauges. Since batteries inside the human body are avoided as much as possible, a transcutaneous power link is used to wirelessly power the implant. The same RF link provides an elegant way of establishing bi-directional data communication between the external base station and the medical device. This paper describes a front-end IC that manages both power reception and bi-directional data communication. It has a clock generation circuit on board to drive additional digital processing circuits. A new architecture that uses a current driven data demodulation principle is introduced. It is able to detect an AM signal with modulation depth of a mere 4%, which is better than recent similar systems in the field. The IC is fabricated in a solid 0.35 μm HVCMOS technology and consumes only 0.56 mA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.