Abstract

The olfactory receptor neurons in basiconic sensilla on the antennae ofUtetheisa ornatrix, which, in females, had earlier been shown to be responsive to stimulation with hydroxydanaidal (HD), are here shown to be responsive to volatile substances in samples of pyrrolizidine alkaloids (PAs). These latter substances are secondary plant metabolites present in the host plant of the larvae. Their sequestration during larval life serves to protect all life stages from predation. In males, the PAs also provide precursors for the production of the male pheromone, HD. In females, basiconic receptor neurons begin to respond to stimulus cartridges containing 1 ng of (R)-(-)-hydroxydanaidal, 100 ng of its isomer, (S)-(+)-hydroxydanaidal, and to volatiles emanating from 10μg of the alkaloids monocrotaline and heliotrine. Receptor neurons in males are generally responsive to the same array of substances but with reduced sensitivity. The dietary background of the adult moths with respect to prior ingestion of PAs does not influence the response capabilities of basiconic receptor neurons to HD or to the volatile components of PAs. Earlier studies in another arctiid (Rhodogastria), had indicated that trace amounts of HD are present in PAs, presumably as their hydrolysis product. Thus we assume that, under natural conditions, HD may be an active component of the volatiles from PAs and may serve as both a male pheromone and a kairomone. Sensitivity to HD could thereby provide information about the location and PA content of potential mates and food plants. Mechanisms that may have resulted in the evolution of a signaling system with these properties are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.