Abstract

As a novel optical molecular imaging technique, bioluminescence tomography (BLT) can be used to monitor the biological activities non-invasively at the cellular and molecular levels. In most of known BLT studies, however, the time variation of the bioluminescent source is neglected. It gives rise to the inconsistent views during the multiview continuous wave measurement. In other words, the real measured data from different measured views come from 'different' bioluminescent sources. It could bring large errors in bioluminescence reconstruction. In this paper, a posteriori correction strategy for adaptive FEM-based reconstruction is proposed and developed. The method helps to improve the source localization considering the bioluminescent energy variance during the multiview measurement. In the method, the correction for boundary signals by means of a posteriori correction strategy, which adopts the energy ratio of measured data in the overlapping domains between the adjacent measurements as the correcting factor, can eliminate the effect of the inconsistent views. Then the adaptive mesh refinement with a posteriori error estimation helps to improve the precision and efficiency of BLT reconstruction. In addition, a priori permissible source region selection based on the surface measured data further reduces the ill-posedness of BLT and enhances numerical stability. Finally, three-dimension numerical simulations using the heterogeneous phantom are performed. The numerically measured data is generated by Monte Carlo (MC) method which is known as the Gold standard and can avoid the inverse crime. The reconstructed result with correction shows more accuracy compared to that without correction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.