Abstract

A growing body of evidence has shown that oxidative stress may be involved in the development of vascular complications associated with diabetes. However, the molecular mechanism for increased reactive oxygen species (ROS) production in diabetes remains uncertain. Among various possible mechanisms, attention have increasingly been paid to NAD(P)H oxidase as the most important source of ROS production in vascular cells. High glucose level stimulates ROS production through protein kinase C (PKC)-dependent activation of vascular NAD(P)H oxidase. Furthermore, the expression of NAD(P)H oxidase components is increased in micro- and macrovascular tissues of diabetic animals in association with various functional disorders and histochemical abnormalities. These results suggest that vascular NAD(P)H oxidase-driven ROS production may contribute to the onset or development of diabetic micro- or macrovascular complications. In this point of view, the possible new strategy of antioxidative therapy for diabetic vascular complications is discussed in this review.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.