Abstract
In the current concept of phototransduction, the concentration of cGMP in retinal rod outer segments is controlled by the balance of two enzyme activities: cGMP phosphodiesterase (PDE) and guanylyl cyclase (GC). However, no protein directly mediates these two enzyme systems. Here we show that RGS9, which is suggested to control PDE activity through regulation of transducin GTPase activity (He, W., Cowan, C. W., and Wensel, T. G. (1998) Neuron 20, 95-102), directly interacts with GC. When proteins in the Triton X-100-insoluble fraction of bovine rod outer segments were isolated by two-dimensional gel electrophoresis and binding of GC to these proteins was examined using a GC-specific antibody, proteins (55 and 32 kDa) were found to interact with GC. However, the activity of GC bound to the 55-kDa protein was not detected. This observation was elucidated by the finding that the 55-kDa protein inhibited GC activity in a dose-dependent manner. Amino acid sequence showed that five peptides derived from the 55-kDa protein were identical to corresponding peptides of RGS9. Together with other biochemical characterization of the 55-kDa protein, these observations indicate that the 55-kDa protein is RGS9 and that RGS9 inhibits GC. RGS9 may serve as a mediator between the PDE and GC systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.