Abstract
The conductance of oocytes expressing T338C CFTR (Cystic Fibrosis Transmembrane Conductance Regulator) exhibits variable responses to dithiothreitol (DTT) and 2-mercaptoethanol (2-ME) that we proposed might be due to the extraction of copper from an adventitious binding site (Liu et al. J Biol Chem 281(12):8275-8285, 2006). In order to study the origins of variability in chemical reactivity of T338C CFTR channels, oocytes expressing T338C CFTR were exposed to BCNU (bischloroethylnitrosourea), an inhibitor of glutathione reductase. BCNU treatment caused a significant reduction of initial conductance and an increase in the response to 2-ME or DTT, suggesting a direct or indirect influence of intracellular glutathione (GSH), a major determinant of the disposition of intracellular copper. Single-channel recordings indicated that T338C CFTR channels not exposed to 2-ME or DTT exhibited multiple conductance levels not seen in T338A CFTR channels. Exposure to BCNU shifted the distribution of single-channel current amplitudes towards lower values, whereas exposure to DTT favored higher amplitudes. These results suggest that the altered chemical state of T338C channels is associated with a decreased single-channel conductance and that intracellular factors (most likely GSH) may modulate the propensity of the channel to form these altered states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.