Abstract

The HIV-1 Tat protein is a promising target for AIDS therapy, due to its extra-cellular roles against the immune system. From the 2D-NMR structure of Tat, we have designed molecules, called TDS, able to bind to Tat and inhibit HIV-1 replication in vitro. This new family of antivirals is composed of a triphenylene aromatic ring substituted with at least one carbon chain bearing a succinimide group. These ligands are prepared from triphenylene or 2,6,10-trimethylphenylene in 3–6 steps depending on the target molecule.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.