Abstract

Summary The development and operation of geothermal plants play a crucial role in the transition to sustainable and low-carbon energy systems. In this paper, we have presented a seamless and flexible pore-to-process digital solution for the design and assessment of geothermal systems, encompassing the geothermal reservoir, gathering network, and geothermal power plant. Our primary focus in this study centers on the geothermal power plant with a detailed analysis of the functionality and performance of two commonly used configurations—a single-flash power plant and a double-flash geothermal power plant. Our work highlights that overall exergy efficiency of the studied geothermal power plants declines over time, primarily due to a decrease in the quality of the geothermal reservoir. Additionally, our analysis demonstrated that variations in the inlet separator pressure have a notable impact on the overall behavior of the power plant. Parametric studies also reveal that increasing the inlet separator pressure leads to decreased overall exergy efficiency and turbine power, resulting from less efficient conversion of available exergy into useful work. Our studies showed that a substantial portion of the available exergy in the geothermal fluid is being dissipated in the condenser. Consequently, optimizing the design and operation of the condenser emerges as a crucial factor in enhancing the overall efficiency of geothermal power plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.